Linear Algebra | Summary

Vectors and Products

Vectors starting at different points are equal if their normal and direction are

Parallelogram law: adding two vectors corresponds to finding the diagonal of the parallelogram
with those vectors as adjacent sides

0 = c=00rg=0

1 0 0
1 0

Standard basis vectors:e; = | |,ea=| |, en =
0 0 1

These form the standard basis for R" (or C", if we are considering complex numbers)
Dot product: vector — scalar: sum of pairwise multiplication of corresponding vector
elements

Distributivity: (v +9)-w=u-w+v-w

Linearity: (cu) - ¥ = ¢(4 - v)

v-9 >0, and isonIyOwhenﬁza
Norm: ||v|| is defined as V¥ -4, and corresponds to the length of the vector

Linearity: ||cv|| = |¢|||9]|

—

o L. . v . . .
The normalization of a vector 3 is © = W v is ¥ with magnitude 1, i.e. v =1
v

—

Angle between vectors in terms of dot product: |4 - ¥ = ||4||||9|| cos @

So, the magnitude of the dot product encodes the angle of the vectors
Orthogonal vectors: perpendicular vectors, i.e. vectors where u x v = 0
All vectors are orthogonal to 0

al . b
[ ] is orthogonal to [ ] etc.
b —a
. _ . . N A T
Projection of ¥ onto w: |proj;(v) = (v - w)w = e W
w

This finds the components of ¥ that is parallel to w
Perpendicular component of ¥ to w: perp;(v) = ¥ — proj;(v)
perp and proj are always orthogonal
Standard Inner Product: (v, w) = viwi + vows + - - - + vpwy
Generalization of the dot project that can be used for C
Linearity of first argument: (4, 9) = (v, 4)
U1 ai U203 — U3a2
Cross product: for i = |ua|,d = |a2|, 4 xd = |—(ui1a3 — usai)
us3 as u3a2 — U201



The product 4 x a will be orthogonal to both % and d

u x a = ||ull||a| siné

Skew symmetry: u x @ = —a X 4
The cross product is linear in both arguments

Linear Combinations

Linear combination: c19; + ¢2¥s + - -+ + ¢, Un

Span: set of all possible linear combinations: Span{v1,...,v,}
0 is always in a span of vectors
The span of one vector is a line

0 2 1 0 2 1
Is |1{ inSpan{|0]|, |[0[}? Solve |1| =a |0| +b |0| to find a system of linear equations
0 5 3 0 5 3

Vector equation of line with slope g through point {Z]: = [w} = {wl] +1 m ,teR
p Y1

This can generalize to R™

A line parallel to this has the same direction vector

Line through « with direction v as a set of points (vectors): | £ = {u + tv : t € R}

Line through vectors p and q: =1+ t(g —u),t € R| (d is a parameter)

Plane through origin: | P = span {4, W} = {sv + tw + a : s,t € R}

Without the constant offset a, this is a plane through the origin

v and u are the direction vectors

Plane through points 4, g, 7: |P = {4 + s(¢ — u) + t(F — 1) : s,t € R}

Finding a scalar equation of a plane: find normal vector to the plane using the cross product,

X ni
equate |y| - |n2| =0, by the dot product definition, nix + nay + nzz =0
z ns

Systems of equations arise from questions about spans
If v € Span {u, w}, then ¥ = au + bw, meaning v; = auy + bwi, v = aus + bw,, etc.
Asking this is like asking if ¥ = ad + bw has any solutions
A solution set has 0, 1, or co solutions (0 < inconsistent system of equations)
The equivalent system has the same solution set
EROs (elementary row operations) always produce equivalent systems
Options: switching rows, scaling a row by non-0, setting one row as a linear combination of
others
Ovi + Ovs + - -- = 0 is a trivial row that doesn't add any information
Row equivalency: a matrix can be transformed into another only using EROs



REF (Row Echelon Form): O-rows all at the end, leading entry appears to the right of term
above
RREF (Reduced Row Echelon Form): In REF, all pivots are 1, pivots are the online nonzero
entry in their column
RREF is unique for a matrix
If the system is inconsistent, then [0. .. 0|b] will appear
Gauss-Jordan elimination: Matrix — REF row by row downward, REF — RREF row by row
upward
Rank: Matrix 4,,.,, has r pivots in RREF (and/or REF) <= Rank(A) =r
Rank(A) < min{m,n}
System is consistent <= Rank(A) = Rank([A|b])
Let A € M, (F) with Rank(A) =7
If [A|3] is consistent, the solution set has n — r parameters (degrees of freedom)
[A[b] is consistent for every b <= r=m
The nullity of A,,., = n — Rank(A) is the number of parameters
Homogeneous system: b= 0...0]
Always has a solution — Always consistent for any A

The null space of 4, Null(4), is the solution to [A]0]
This can always be written as the span of vectors

The solution sets of [A[b] and [A]0] will only differ by a constant offset vector

1 —bi
Reminder for C: — = ad — = i
z Z Xz a? + b?

ai,1 a1 Qn,1

AZ = b encodes the whole system of equations z; [212| + z, |222| +--- + z,, |92

Linear combination of columns of A by bZ equals b
A(Z + 9) = AZ + Ay, A(cZ) = c(AZ)
If AZ = € is consistent for every standard basis vector in F, then Rank(A) = m

Let the solution of 47 =0 be S.IfZ,j € Sandc e F,thenZ + g5 € S, cz € S, and c17 + c23 € S,
etc

Let AZ = 3, where b #* 0 be consistent, with solution 5. Let AZ = 0 be the associated
homogeneous system with solution set S. Then, if z,, € S S = {zp)+2:2 €S}

If AZ = b is consistent, it has the same number of solutions/parameters as Az = 0

Let AZ = band AZ = ¢ be consistent with b ¢ 0 # b. If their solution sets are §, and §, with

particular solutions z; and &, then | S, = {(Z. — &) + Z: Z € S}

I.e. the second solution set is just an offset of the first one

Column Space of A, Col(A): the span of the columns of A

A% = bis consistent <= b€ Col(A) |, this is use to show consistency

Transpose of a matrix AT: for i, j € N, switch A;j with Aj;



Row Space of 4, Row(A): the span of the rows of A, if treated as column vectors
Row(A) = Col(AT)
Performing EROs does not affect the row space, since the mirror the operations used to populate
the span
Matrix Equality: matrices are the same size and every corresponding element is equal
Column extraction: A, is the ith column of A
Matrix equality test: |A =B <= Az = Bz forallz € F"

Matrix multiplication example:

ii{—l - ii[—q éim I
| 2 —4|| N
8 7 8 7 8 7 6 —4

# of cols in the first matrix = # of rows in the second matrix
Matrix multiplication is non-commutative
Every column of C = AB is a member of Col(A)

(¢, 7)th entry of C'is the dot product of column i of A and column j of B
Distributivity: (A + B)C = AC + BC (right-handed), A(C + D) = AC + AD (left-handed)
Come in different-handed versions since matrix multiplication isn't commutative

Associativity: ACE = A(CE) = (AC)E
ForseF
s(A+ B) =sA+ sB
s(AB) = (sA)B = A(sB) = sAB
The cancellation law only holds if A is invertible, i.,e. AB= AC and A # O /~ B = Cunless A
is invertible
Similarly, AB # O /—~ A =0or B=0unless A is invertible

Transposes can be added and scaled, then converted without difference, i.e. |(AB)T = BT AT

Identity matrix: |I,, A = A and AI, = A} the same holds for vectors

Elementary matrix: result of one ERO performed on I

These are used to encode EROs and carry them out by multiplication

This matrix is found my performing the same ERO on I

These can be chained together. D = Ey X E_1 X -+ X E3 x B1 x A
Invertibility: A matrix is invertible if it is n x n, and there exists F € M,,.,, such that
AB=CA=1,

In this case, we must have B = C

If B exists, C must also exist, and vice-versa

We denote this as the inverse A=, where AA'=A"1A=1,
A is invertible <= Rank(A) =n <= RREF(4) =1,
Inverse matrices can be found by solving the augmented matrix [A|I,,] into RREF form. If A
becomes I,,, then I,, has become the inverse. Otherwise, A is not invertible.



Chapter 5 - Linear Transformations

Function determined by matrix A is Ty : F* — F™, where
Tis linear <= T(cZ +¥) = cT'(Z) + T(y)
0 maps to 0: We always have T(0) = 0
We prove non-linearity by counterexample
Functions that don't "look" linear often aren't, e.g. Z2, #7, \/5' etc.)
We have Range(T4) = Col(A)

Range: set of values that could possibly be achieved by a linear transformation of A
T :F" — F™ is onto/surjective iff Range(7") = F™, which happens iff Rank(A) = m
ker(T,4) = Null(A), i.e. the solution set to AZ = 0, i.e. the set of inputs to T' where the output is 0
One-to-one/surjective transformation: T'(zZ) = T(y) — Z =14y

Distinct pairs of element in F"* and F™ are mapped together

This occurs iff Rank(A) = n

¢/ Invertibility Criteria

A is invertible

T, is invertible

T, is one-to-one

T, is onto

Null(4) = {0} (only a trivial solution to AZ = 0)
Col(A) =F" (Az = bis always consistent)
Nullity(A4) = 0

Rank(4) =n

RREF(A) = I,,

Every linear transformation has a matrix [T].(z) where [T]. = [T(e1) T(e2) ... T(en)]
T is onto <= Rank([T].) =m
T is one-to-one <= Rank([T].) =n

Projection, reflection, and rotation are linear transformations
cosf —sin 0]

Counter-clockwise rotation by 0: |
sinf cos6

Composition of linear functions (T3 o Th)(Z) = T2(T1(Z)) = [T2]:[T1]:(Z)
This is guaranteed to be a linear function

Chapter 6 - Determinants

The determinant gives some information about a matrix; expresses itself as a scaling factor



det o] = a, det |* °| = ad—b
ea—a,ecd—a—c

Larger matrices: expand along a row or column, sum together all the matrices formed by
removing the current row can column times the current value, with the sign following a
checkerboard pattern in the matrix

Matrix has a zero row — det A =0
Upper-triangular matrices have the determinant equal to the diagonal entries
EROs affect the determinant:
Row swap: det A = —det A
Row scale by m: det A = mdet A
Row addition: no change to the determinant
|det(AB) = det(A) det(B)|
This can be chained together arbitrarily
|A is invertible <= det A # 0|

_ 1
 detA

Cofactor matrix: determinants of each row/col removed submatrix with alternating signs

det(A™1)

, assuming that A is invertible

Adjugate matrix: transpose of the cofactor matrix

1
Al x adj(A)

~ det A
Cramer's Rule: Let AZ = b. If we replace column j of A with bto get A, then the solution to
o >, det Bj
AZ =bis Z; =
det A

We can use j = 1...n to find the whole solution vector z

Determinant indicates how much multiplying by a matrix scales space
Negative determinant — spaces was "flipped"

Chapter 7 - Eigenvectors and Eigenvalues

Sometimes, a transformation just scales a vector instead of changing its direction, i.e. AZ = \Z,
where A € F

Such a vector Z is an eigenvector, and its scaling factor X is its eigenvalue
Eigenvalue equation: A7 = \Z < (A— A)Z =0
Characteristic polynomial C4 = det(A — AI) = 0 solves for eigenvalues

The highest term c,, is (—1)"

cn-1 = (—1)""1 x trace(A)

The constant term c is det(A)

In C, we have i A; = trace(A) and ﬁ i = det(A) (these both follow)

i=1 =1

We can find an eigenvector by plugging an eigenvalue into (A — AI)Z = 0

Any scalar multiple of z is trivially also an eigenvalue



Eigenspace of A: E)(A) = Null(A — A\I) = solution set of (A — AI)Z = 0

Expressing A as PDP~! (where D is a diagonal matrix) makes it easier to compute A*

A is similar to B — PBP ! = A for some P
If A and B are similar, the have the same eigenvalues, characteristic polynomial, and
determinant

Diagonalizable: A = PDP~! (where D is a diagonal matrix)
A will have n eigenvalues, which will be the diagonal entries of D
A has n distinct eigenvalues <= A is diagonalizable, and P = [0} ... 0;] consists of the
eigenvectors of A

Chapter 8 - Subspaces and Bases

Subset V C " is a subspace if it is closed under addition and multiplication, and 0eV
Essentially, the a subspace is the span of any subset of F"
{0}, Span(V), Null(4), Col(A)/Range(T) for any A are subspaces
Eigenspaces of matrices are subspaces

|V§F" isasubspace <= V #0andVz,ycV,ceF,z2+cyecV

v] ...v; € F™ are linearly dependent if we have some c¢;v] + - - - + ¢,v}, = 0, where not all
ci...cpare0
At least one vector is a linear combination of others
If ¢; =--- = ¢, = 0is the only solution, the set is linearly independent
B = {v1...0:} C V is a basis for subspace V if Bis linearly independent and Span(B) =V
Everything in B can be constructed from B's vectors
Let A be the n x k matrix [v7 ... vk
{0} ...v}} is linearly independent <= Rank(A) = k (i.e. it has no pivots)
The set of vectors that correspond to RREF(A) pivots are a linearly independent set with
span Span {a; ...ax}
Adding a non-pivot vector makes the set linearly dependent
A set of more than n vectors in F* must be linearly dependent
Every subspace has a spanning set Span {v1...v;} =V
SCV = Span(S)CV
Span(S) = F* < Rank([S]) =n
Every subspace has a basis — Any basis for F” must have n vectors
B={vi...v} spans F" < Bis linearly independent
Set of Pivot columns of A (not necessarily RREF(A)) is a basis for Col(A)
If Null(A) = {t1@) +--- + t,@ : t;_, € F}, then {Z;...Z,} is a basis for Null(A)
All bases for a set have the same number of vectors (i.e. dimension)
For A € M,,«»F,n = Rank(A) + Nullity(A) = dim(Col(4)) + dim(Null(A))



Let V be a subspace of F" with basis B = {v; ... U;}. There exist unique c; ... c; € F such that
W=cv1+ - +evgforanweV
For g, these are just the components of the vector
Coordinate vector of w with respect to B: [t]p = [c1...cp)T
Taking coordinates is a linear transformation
Change of basis from B to C: ¢[I]z = [[vi]5. .. [vk]B]
[@lc = clI[Z] 5, [Z]p = BlI]c|Z]c (basis of Z changes)
c|[I] s is invertible and its inverse is g[I]¢
T)5 = T[T(@)]5, .., [T(@)] 5], [T@)]5 = [T)5[0)5
Tle = cl)5(T)5 slc = (slI]c) "[T5l
[T]p and [T are similar over F
Finding the standard matrix: [T|. = .[I]|5[T|sB[I]c
(A, Z) is an eigenpair of T <= (), [Z]g) is an eigenpair of [T
T is diagonalizable over F < there exists an ordered basis consisting of the eigenvectors of T
P will be the matrix consisting of these eigenvectors (in the same order as the basis)
D will be diag()\;1 ... Ax), i.e. the eigenvalues as diagonal entries
T is diagonalizable < [T is diagonalizable

Eigenvectors corresponding to unique eigenvalues are linearly independent —> P is invertible,
as expected

Algebraic multiplicity of ); is the power of (A — X;) in C4(\)

Geometric multiplicity of \; is the dimension of the eigenspace of \;
Turns out to be Nullity(A — A\, 1)

We have 1 < gy, < ay,

The union of bases of distinct eigenspaces is linearly independent

Diagonalizability test: diagonalizable <= C4(\) does not have an irreducible term and ay, = g,
forall 4

Let B= P 'AP, so A and B are similar
Then B* = P~1AP
If B is diagonal and P diagonalizes A, then B = diag(A¥... k)

Unit 10: Vector Spaces

Addition &: combines two elements in a vector spaces into a vector, i.e. vector ® vector —

vector

Scalar multiplication ®: scalar ® vector — vector

/ Vector Space Axioms

V is a vector space over the field F if, under operations @ and ®, we have



C1
C2
V1
V2
V3
V4
V5
V6
V7
V8

closure under addition &

closure under scalar multiplication ®
commutative addition

associative addition

additive identity

additive inverse

vector addition @ distributive law
scalar addition distributive law
associative scalar multiplication

multiplicative identity

F", Apxn(F), T : F™ — ", polynomials with degree < n are all vector spaces

The zero space: V = {0}

The zero vector and additive inverse are unique in a vector space

0e0Z=0anda®0=0forallZeV,acF
—z=(-1)oz

Cancellationlaw: a ©Z =0 =— a=0o0rZ =0

Linear combination and span apply to vector spaces

U C Vis a subspace of V if U is a non-empty (i.e. contains a 5) and is closed under addition and

scalar multiplication

Let V be a vector spaces over F with W = {v1...v3} CV

Span(W) is a subspace of V
If U is a subspace where W C U, then Span(W) C U
Bis a basis for V if Bis linearly independent and Span(B) =V

Unique representation theory holds for vector spaces as well; so do coordinate vectors, change

of basis matrices, etc.



