
Linear Algebra I Summary
Vectors and Products

Vectors starting at different points are equal if their normal and direction are

Parallelogram law: adding two vectors corresponds to finding the diagonal of the parallelogram
with those vectors as adjacent sides

c→v ⟹ c = 0 or →v = →0

Standard basis vectors: , , e1 =

⎡⎢⎣1
0

⋮
0

⎤⎥⎦ e2 =

⎡⎢⎣0
1

⋮
0

⎤⎥⎦ en =

⎡⎢⎣0
0

⋮
1

⎤⎥⎦These form the standard basis for Rn (or Cn, if we are considering complex numbers)

Dot product: vector  → scalar : sum of pairwise multiplication of corresponding vector
elements

Distributivity: (→u + →v) ⋅ →w = →u ⋅ →w + →v ⋅ →w

Linearity: (c→u) ⋅ →v = c(→u ⋅ →v)

→v ⋅ →v ≥ 0, and is only 0 when →v = →0

Norm: ∥v∥ is defined as √→v ⋅ →v, and corresponds to the length of the vector
Linearity: ∥c→v∥ = |c|∥→v∥

The normalization of a vector →v is v̂ =
→v

∥→v∥
, v̂ is →v with magnitude 1, i.e. v̂ = 1

Angle between vectors in terms of dot product: →u ⋅ →v = ∥→u∥∥→v∥ cos θ

So, the magnitude of the dot product encodes the angle of the vectors

Orthogonal vectors: perpendicular vectors, i.e. vectors where →u × →v = 0

All vectors are orthogonal to →0

 is orthogonal to , etc.[ ]
a

b
[ ]
b

−a

Projection of →v onto →w: proj
→w(→v) = (→v ⋅ ŵ)ŵ =

→v ⋅ →w

∥ →w∥2
→w

This finds the components of →v that is parallel to →w

Perpendicular component of →v to →w: perp
→w(→v) = →v − proj

→w(→v)

perp and proj are always orthogonal

Standard Inner Product: ⟨→v, →w⟩ = v1w1 + v2w2 + ⋯ + vnwn
–––

Generalization of the dot project that can be used for C

Linearity of first argument: ⟨→u, →v⟩ = ⟨→v, →u⟩

Cross product: for , , →u =
⎡⎢⎣u1

u2

u3

⎤⎥⎦ →a =
⎡⎢⎣a1

a2

a3

⎤⎥⎦ →u × →a =
⎡⎢⎣ u2a3 − u3a2

−(u1a3 − u3a1)
u3a2 − u2a1

⎤⎥⎦



Linear Combinations

The product →u × →a will be orthogonal to both →u and →a

→u × →a = ∥→u∥∥→a∥ sin θ

Skew symmetry: →u × →a = −→a × →u

The cross product is linear in both arguments

Linear combination: c1→v1 + c2→v2 + ⋯ + cn→vn

Span: set of all possible linear combinations: Span{ →v1, … , →vn}
→0 is always in a span of vectors

The span of one vector is a line

Is  in Span { }? Solve  to find a system of linear equations
⎡⎢⎣0

1
0

⎤⎥⎦ ,
⎡⎢⎣2

0
5

⎤⎥⎦ ⎡⎢⎣1
0
3

⎤⎥⎦   = a + b
⎡⎢⎣0

1
0

⎤⎥⎦ ⎡⎢⎣2
0
5

⎤⎥⎦ ⎡⎢⎣1
0
3

⎤⎥⎦Vector equation of line with slope q
p

 through point : [ ]
a

b
→ℓ = , t ∈ R[ ] = [ ] + t [ ]

x

y

x1

y1

p

p

This can generalize to Rn

A line parallel to this has the same direction vector

Line through →u with direction →v as a set of points (vectors): L = {→u + t→v : t ∈ R}

Line through vectors →p and →q:  (→u is a parameter)→ℓ = →u + t(→q − →u), t ∈ R

Plane through origin: P = span {→v, →w} = {s→v + t →w + →a : s, t ∈ R}

Without the constant offset →a, this is a plane through the origin
→v and →u are the direction vectors

Plane through points →v, →q, →r: P = {→u + s(→q − →u) + t(→r − →u) : s, t ∈ R}

Finding a scalar equation of a plane: find normal vector to the plane using the cross product,

equate = 0, by the dot product definition, n1x + n2y + n3z = 0⋅
⎡⎢⎣xyz⎤⎥⎦ ⎡⎢⎣n1

n2

n3

⎤⎥⎦Systems of equations arise from questions about spans

If →v ∈ Span {→u, →w}, then →v = a→u + b →w, meaning v1 = au1 + bw1, v2 = au2 + bw2, etc.
Asking this is like asking if →v = a→u + b →w has any solutions

A solution set has 0, 1, or ∞ solutions (0 ⟺  inconsistent system of equations)

The equivalent system has the same solution set

EROs (elementary row operations) always produce equivalent systems
Options: switching rows, scaling a row by non-0, setting one row as a linear combination of
others

0v1 + 0v2 + ⋯ = 0 is a trivial row that doesn't add any information
Row equivalency: a matrix can be transformed into another only using EROs



REF (Row Echelon Form): 0-rows all at the end, leading entry appears to the right of term
above
RREF (Reduced Row Echelon Form): In REF, all pivots are 1, pivots are the online nonzero
entry in their column

RREF is unique for a matrix
If the system is inconsistent, then [0 … 0|b] will appear

Gauss-Jordan elimination: Matrix → REF row by row downward, REF → RREF row by row
upward
Rank: Matrix Am×n has r pivots in RREF (and/or REF) ⟺  Rank(A) = r

Rank(A) ≤ min {m,n}

System is consistent ⟺  Rank(A) = Rank([A|→b])

Let A ∈ Mm×n(F) with Rank(A) = r

1. If [A|→b] is consistent, the solution set has n − r parameters (degrees of freedom)

2. [A|→b] is consistent for every →b ⟺  r = m

The nullity of Am×n = n − Rank(A) is the number of parameters

Homogeneous system: →b = [0 … 0]T

Always has a solution → Always consistent for any A

The null space of A, Null(A), is the solution to [A|→0]

This can always be written as the span of vectors

The solution sets of [A|→b] and [A|→0] will only differ by a constant offset vector

Reminder for C: 
1
z

=
z

z × –z
=

a − bi

a2 + b2

A→x = →b encodes the whole system of equations x1 + x2 + ⋯ + xn

⎡⎢⎣a1,1

a1,2

⋮

⎤⎥⎦ ⎡⎢⎣a2,1

a2,2

⋮

⎤⎥⎦ ⎡⎢⎣an,1

an,2

⋮

⎤⎥⎦Linear combination of columns of A by b→x equals →b

A(→x + →y) = A→x + A→y, A(c→x) = c(A→x)

If A→x = →ei is consistent for every standard basis vector in Fm, then Rank(A) = m

Let the solution of A→x = →0 be S. If →x, →y ∈ S and c ∈ F, then →x + →y ∈ S, c→x ∈ S, and c1→x + c2→y ∈ S,
etc

Let A→x = →b, where →b ≠ →0 be consistent, with solution ~
S. Let A→x = →0 be the associated

homogeneous system with solution set S. Then, if xp ∈
~
S, ~

S = { →xp + →x : →x ∈ S}

If A→x = →b is consistent, it has the same number of solutions/parameters as A→x = →0

Let A→x = →b and A→x = →c be consistent with →b ≠ →c ≠ →0 ≠ →b. If their solution sets are ~
Sb and ~

Sc with

particular solutions →xb and →xc, then ~
Sc = {( →xc − →xb) + →z : →z ∈

~
Sb}

I.e. the second solution set is just an offset of the first one

Column Space of A, Col(A): the span of the columns of A

; this is use to show consistencyA→x = →b is consistent  ⟺ →b ∈ Col(A)

Transpose of a matrix AT : for i, j ∈ N, switch Aij with Aji



Row Space of A, Row(A): the span of the rows of A, if treated as column vectors
Row(A) = Col(AT )

Performing EROs does not affect the row space, since the mirror the operations used to populate
the span

Matrix Equality: matrices are the same size and every corresponding element is equal

Column extraction: Aei  is the ith column of A
Matrix equality test: A = B ⟺ A→x = B→x for all x ∈ F

n

Matrix multiplication example:

[ ] = =
⎡⎢⎣1 2

3 5
8 7

⎤⎥⎦ −1 3
2 −4

⎡⎢⎣ [ ] [ ]
⎡⎢⎣1 2

3 5
8 7

⎤⎥⎦ −1
2

⎡⎢⎣1 2
3 5
8 7

⎤⎥⎦ 3
−4

⎤⎥⎦ ⎡⎢⎣3 −5
7 −11
6 −4

⎤⎥⎦# of cols in the first matrix = # of rows in the second matrix

Matrix multiplication is non-commutative

Every column of C = AB is a member of Col(A)

(i, j)th entry of C is the dot product of column i of A and column j of B

Distributivity: (A + B)C = AC + BC (right-handed), A(C + D) = AC + AD (left-handed)
Come in different-handed versions since matrix multiplication isn't commutative

Associativity: ACE = A(CE) = (AC)E

For s ∈ F

s(A + B) = sA + sB

s(AB) = (sA)B = A(sB) = sAB

The cancellation law only holds if A is invertible, i.e. AB = AC and A ≠ O /⟹ B = C unless A
is invertible

Similarly, AB ≠ O /⟹ A = 0 or B = 0 unless A is invertible

Transposes can be added and scaled, then converted without difference, i.e. (AB)T = BTAT

Identity matrix: ; the same holds for vectorsImA = A and AIn = A

Elementary matrix: result of one ERO performed on I
These are used to encode EROs and carry them out by multiplication
This matrix is found my performing the same ERO on I

These can be chained together: D = Ek × Ek−1 × ⋯ × E2 × E1 × A

Invertibility: A matrix is invertible if it is n × n, and there exists E ∈ Mn×n such that
AB = CA = In

In this case, we must have B = C

If B exists, C must also exist, and vice-versa

We denote this as the inverse A−1, where AA−1 = A−1A = In

A is invertible ⟺  Rank(A) = n ⟺  RREF(A) = In

Inverse matrices can be found by solving the augmented matrix [A|In] into RREF form. If A
becomes In, then In has become the inverse. Otherwise, A is not invertible.



Chapter 5 - Linear Transformations

Chapter 6 - Determinants

Function determined by matrix A is TA : Fn → F
m, where TA : →x ↦ A→x

T  is linear ⟺  T (c→x + →y) = cT (→x) + T (→y)
→0 maps to →0: We always have T (→0) = →0

We prove non-linearity by counterexample
Functions that don't "look" linear often aren't, e.g. →x2, →x→y, √→y, etc.)

We have Range(TA) = Col(A)

Range: set of values that could possibly be achieved by a linear transformation of A

T : Fn → F
m is onto/surjective iff Range(T ) = F

m, which happens iff Rank(A) = m

ker(TA) = Null(A), i.e. the solution set to A→x = →0, i.e. the set of inputs to T  where the output is 0

One-to-one/surjective transformation: T (→x) = T (→y) ⟹ →x = →y

Distinct pairs of element in Fn and Fm are mapped together
This occurs iff Rank(A) = n

Invertibility Criteria

A is invertible
TA is invertible
TA is one-to-one
TA is onto
Null(A) = {→0} (only a trivial solution to A→x = →0)
Col(A) = F

n (A→x = →b is always consistent)
Nullity(A) = 0

Rank(A) = n

RREF(A) = In

Every linear transformation has a matrix [T ]ε(→x) where [T ]ε = [T ( →e1) T ( →e2) … T ( →en)]

T  is onto ⟺  Rank([T ]ε) = m

T  is one-to-one ⟺  Rank([T ]ε) = n

Projection, reflection, and rotation are linear transformations

Counter-clockwise rotation by θ: [ ]
cos θ − sin θ

sin θ cos θ

Composition of linear functions (T2 ∘ T1)(→x) = T2(T1(→x)) = [T2]ε[T1]ε(→x)

This is guaranteed to be a linear function

The determinant gives some information about a matrix; expresses itself as a scaling factor



Chapter 7 - Eigenvectors and Eigenvalues

det [ ] = a, det [ ] = ad − bca
a b

c d

Larger matrices: expand along a row or column, sum together all the matrices formed by
removing the current row can column times the current value, with the sign following a
checkerboard pattern in the matrix

Matrix has a zero row → detA = 0

Upper-triangular matrices have the determinant equal to the diagonal entries

EROs affect the determinant:
Row swap: detA = − detA

Row scale by m: detA = mdetA

Row addition: no change to the determinant

det(AB) = det(A) det(B)

This can be chained together arbitrarily

A is invertible  ⟺ detA ≠ 0

, assuming that A is invertibledet(A−1) =
1

detA

Cofactor matrix: determinants of each row/col removed submatrix with alternating signs

Adjugate matrix: transpose of the cofactor matrix

A−1 =
1

detA
× adj(A)

Cramer's Rule: Let A→x = →b. If we replace column j of A with →b to get Ab, then the solution to

A→x = →b is →xj =
detBj

detA
We can use j = 1 …n to find the whole solution vector →x

Determinant indicates how much multiplying by a matrix scales space
Negative determinant → spaces was "flipped"

Sometimes, a transformation just scales a vector instead of changing its direction, i.e. A→x = λ→x,
where λ ∈ F

Such a vector →x is an eigenvector, and its scaling factor λ is its eigenvalue

Eigenvalue equation: A→x = λ→x ⟺ (A − λI)→x = →0

Characteristic polynomial CA = det(A − λI) = 0 solves for eigenvalues
The highest term cn is (−1)n

cn−1 = (−1)n−1 × trace(A)

The constant term c0 is det(A)

In C, we have 
n

∑
i=1

λi = trace(A) and 
n

∏
i=1

λi = det(A) (these both follow)

We can find an eigenvector by plugging an eigenvalue into (A − λI)→x = →0

Any scalar multiple of →x is trivially also an eigenvalue



Chapter 8 - Subspaces and Bases

Eigenspace of A: Eλ(A) = Null(A − λI) =  solution set of (A − λI)→x = →0

Expressing A as PDP −1 (where D is a diagonal matrix) makes it easier to compute Ak

A is similar to B → PBP −1 = A for some P
If A and B are similar, the have the same eigenvalues, characteristic polynomial, and
determinant

Diagonalizable: A = PDP −1 (where D is a diagonal matrix)
A will have n eigenvalues, which will be the diagonal entries of D

A has n distinct eigenvalues ⟺  A is diagonalizable, and P = [ →v1 … →vn] consists of the
eigenvectors of A

Subset V ⊆ Fn is a subspace if it is closed under addition and multiplication, and →0 ∈ V

Essentially, the a subspace is the span of any subset of Fn

{→0}, Span(V ), Null(A), Col(A)/Range(T ) for any A are subspaces
Eigenspaces of matrices are subspaces

V ⊆ F
n is a subspace  ⟺ V ≠ ∅ and ∀→x, →y ∈ V , c ∈ F, →x + c→y ∈ V

→v1 … →vk ∈ Fn are linearly dependent if we have some c1 →v1 + ⋯ + ck →vk = 0, where not all
c1 … ck are 0

At least one vector is a linear combination of others
If c1 = ⋯ = ck = 0 is the only solution, the set is linearly independent

B = { →v1 … →vk} ⊂ V  is a basis for subspace V  if B is linearly independent and Span(B) = V

Everything in B can be constructed from B's vectors

Let A be the n × k matrix [ →v1 … →vk]

{ →v1 … →vk} is linearly independent ⟺  Rank(A) = k (i.e. it has no pivots)
The set of vectors that correspond to RREF(A) pivots are a linearly independent set with
span Span { →a1 … →ak}

Adding a non-pivot vector makes the set linearly dependent

A set of more than n vectors in Fn must be linearly dependent

Every subspace has a spanning set Span { →v1 … →vk} = V

S ⊆ V ⟹ Span(S) ⊆ V

Span(S) = Fn ⟺ Rank([S]) = n

Every subspace has a basis → Any basis for Fn must have n vectors

B = { →v1 … →vk} spans Fn ⟺  B is linearly independent

Set of Pivot columns of A (not necessarily RREF(A)) is a basis for Col(A)

If Null(A) = {t1→x1 + ⋯ + tk→xk : t1→k ∈ F}, then {→x1 … →xk} is a basis for Null(A)

All bases for a set have the same number of vectors (i.e. dimension)

For A ∈ Mm×nF,n = Rank(A) + Nullity(A) = dim(Col(A)) + dim(Null(A))



Unit 10: Vector Spaces

Let V  be a subspace of Fn with basis B = {→v1 … →vk}. There exist unique c1 … ck ∈ F such that
→w = c1→v1 + ⋯ + ck→vk for an →w ∈ V

For ε, these are just the components of the vector

Coordinate vector of →w with respect to B: [→v]B = [c1 … cn]T

Taking coordinates is a linear transformation

Change of basis from B to C: C[I]B = [[ →v1]B … [ →vk]B]

[→x]C = C[I]B[→x]B, [→x]B = B[I]C[→x]C (basis of →x changes)

C[I]B is invertible and its inverse is B[I]C

[T ]B = T [[T ( →v1)]B, … , [T ( →vk)]B], [T (→v)]B = [T ]B[→v]B

[T ]C = C[I]B[T ]B B[I]C = (B[I]C)−1[T ]BB[I]C
[T ]B and [T ]C are similar over F

Finding the standard matrix: [T ]ε = ε[I]B[T ]BB[I]ε

(λ, →x) is an eigenpair of T  ⟺  (λ, [→x]B) is an eigenpair of [T ]B

T  is diagonalizable over F ⟺  there exists an ordered basis consisting of the eigenvectors of T
P  will be the matrix consisting of these eigenvectors (in the same order as the basis)

D will be diag(λ1 …λk), i.e. the eigenvalues as diagonal entries

T  is diagonalizable ⟺  [T ]B is diagonalizable

Eigenvectors corresponding to unique eigenvalues are linearly independent ⟹  P  is invertible,
as expected

Algebraic multiplicity of λi is the power of (λ − λi) in CA(λ)

Geometric multiplicity of λi is the dimension of the eigenspace of λi

Turns out to be Nullity(A − λiI)

We have 1 ≤ gλi
≤ aλi

The union of bases of distinct eigenspaces is linearly independent

Diagonalizability test: diagonalizable ⟺  CA(λ) does not have an irreducible term and aλi = gλi

for all i

Let B = P −1AP , so A and B are similar
Then Bk = P −1AP

If B is diagonal and P  diagonalizes A, then Bk = diag(λk
1 …λk

n)

Addition ⊕: combines two elements in a vector spaces into a vector, i.e. vector ⊕ vector →
vector

Scalar multiplication ⊙: scalar ⊙ vector → vector

Vector Space Axioms

V is a vector space over the field F if, under operations ⊕ and ⊙, we have



C1  closure under addition ⊕

C2  closure under scalar multiplication ⊙
V1  commutative addition
V2  associative addition

V3  additive identity

V4  additive inverse
V5  vector addition ⊕ distributive law
V6  scalar addition distributive law

V7  associative scalar multiplication

V8  multiplicative identity

F
n, Am×n(F), T : Fm → F

n, polynomials with degree ≤ n are all vector spaces

The zero space: V = {→0}

The zero vector and additive inverse are unique in a vector space

0 ⊙ →x = →0 and a ⊙ →0 = →0 for all →x ∈ V, a ∈ F

−→x = (−1) ⊙ →x

Cancellation law: a ⊙ →x = →0 ⟹ a = 0 or →x = →0

Linear combination and span apply to vector spaces

U ⊆ V is a subspace of V if U is a non-empty (i.e. contains a →0) and is closed under addition and
scalar multiplication

Let V be a vector spaces over F with W = { →v1 … →vk} ⊆ V

Span(W) is a subspace of V

If U is a subspace where W ⊆ U, then Span(W) ⊆ U

B is a basis for V if B is linearly independent and Span(B) = V

Unique representation theory holds for vector spaces as well; so do coordinate vectors, change
of basis matrices, etc.


